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Abstract  
 

The paper presents the results of application of the recur-

rent method of optimum filtering the Gaussian random pro-

cess for forecasting the solar activity index F10.7. The char-

acteristic feature of the method is the use of recurrent func-

tional relationships that makes it possible to specify the ini-

tial autocorrelation function of the random process in the 

discrete form. The comparison of obtained results with the 

corresponding National Oceanic and Atmosphere Admin-

istration data has demonstrated very good compliance of 

forecast errors estimates. This testifies, apparently, to impos-

sibility of further increasing the accuracy of solar activity 

forecasting at the modern level of knowledge of its nature.  

 

Introduction 
 

We will consider the forecasts of the daily-observed flux 

at 2800 MHz in solar flux units (10-22W m
-2

 Hz
-1

). This 

solar radio flux at 10.7 cm is an excellent indicator of solar 

activity. Often called the F10.7 index, it represents one of 

the longest running records of solar activity. This index is 

widely used in studying physical processes in the near-earth 

space. In particular, it represents one of arguments of the 

modern atmospheric density models. 

We have applied the new technique as a methodological 

basis for solving the problem under consideration with the 

Gaussian random process prediction.  We will consider this 

process y(t) with a zero a priori mean and the autocorrelation 

function         

               0, tKTytyE y .           (1) 

The problem of determining the optimum estimate of the 

process   kttty ,  is solved based on measurements        

                      kitvtyz iii ,...,1,  .                (2)                      

Here   kitv i ,...,2,1,   is the Gaussian random process 

with discrete time and independent values with a zero mean 

value and specified covariation matrix Ri.     

The processes y(t) и  itv  are assumed to be mutually 

uncorrelated. The estimate, the errors of which have a mini-

mum variance, is considered to be optimum. 

A.N. Kolmogorov [1] first solved this problem (for a sca-

lar stationary process). In subsequent works the researchers 

obtained the generalizations associated with considering the 

non-stationary and vector random processes [2], [3], The 

inconvenience in applying the developed techniques was 

caused by the necessity of solving the system of linear equa-

tions, the order of which grows with increasing k. 

R. Kalman, R. Buсy and their followers [4], did a con-

siderable step on the way of expanding the field of applying 

the techniques of filtering and forecasting the random pro-

cesses in the works. The problem was reduced to the neces-

sity of applying the forming filter and standard procedures of 

solving the difference equations, which can easily be imple-

mented on computers. However, the application and this 

approach meet some difficulties as well. A complicated task 

is the construction of a forming filter, for the non-stationary 

processes especially. The difficulties are aggravated when 

the correlation function (1) is poorly known a priori and has 

to be updated in the process of filtering based on obtained 

estimates  tŷ , which necessitates the reconstruction of the 

filtering and forecasting algorithm. 

The presented brief review indicates the urgency of con-

structing such a filtering and forecasting technique, which 

could be applicable to the work with the Gaussian random 

process of general form. In this case, the correlation function 

(1) can be specified discretely over some grid of arguments. 

The algorithm of such type was first described, apparently, 

in papers [5 - 8]. The justification of the technique stated 

below was published in [9]. 

 

Derivation of Recurrences Functional 

Relationships 
  

For constructing the algorithm, we apply the criterion of 

maximum of the a posteriori probability   

  
  
 

max
,

1

1






ii

ii
i

Zzp

Zztyp
Ztyp ,             (3) 

where the sequence izzz ,...,2,1  is designated as iZ for brev-

ity. 

We assume that the estimates  

        11
ˆ

  ii tyZtyE ,                            (4) 

             111 ,,,ˆˆ
  iiyi

T
tttKZyytytyE    (5) 

are constructed based on measurements 1iZ . 

For determining the value of  tŷ , which provides a maxi-

mum to criterion (3), it is sufficient to consider the numera-

tor only, because function y(t) does not appear in a denomi-

nator. We write the expression for density in a numerator 
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Here 

   
11
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where K, L, M are some square block matrixes of size (n×n), 

n is the dimension of vector y.  

One can easily show [5] that the maximum of density (6) is 

achieved for  

        11 ˆˆˆ
  iiiii tyztWtyty , 

where 

       1
11

1 ,, 


  iiiiyiiy RttKttKLKtW .  (7) 

So, 

            iiiiiiiiyiiyii tttyzRttKttKtyty 
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Now, it remains to construct the a posteriori correlation 

function  iy tK , . We express the error in forecasting 

 ity  of the  ty  process at the i-th step in terms of a cor-

responding error at the (i-1)-th step. For this purpose, we 

make use of expressions (8) and (2). We obtain 
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Further,  
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When multiplying the terms in the right-hand part of (9) we 

take into consideration that all mean values of type                          

     01   ii tTvtyE , and that 

             iiiiyiiiiiii RttKZTtvtytvtyE 
 1111

, . 

With regard to designation (7), the expression (9) takes the 

form 
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Thus, the stated problem is solved. Two recurrence rela-

tions (8) and (10) are developed, which allow one, based on 

initial data (4) and (6), to process the last measurement and 

to prepare the necessary initial data for performing the next 

step in processing the measurements. In so doing, the maxi-

mum possible accuracy of obtained estimates is provided. 

The constructed recurrence relations represent a basis of the 

filtering and forecasting algorithm for measurements in a 

discrete time. Unlike the recurrence relationships of the 

Kalman-Bucy filter, these relations are functional. This fea-

ture made it possible to construct the filtering and forecast-

ing algorithm for the Gaussian random process.  

 

Example 1. Modelling 
 

Determination of correlation function    iyendy tKtK  ,,   

in the stable filtering mode was carried out for the scalar 

stationary process with the correlation function 

     


















.,0

,,1
, 0








t

t
t

tK y
  (11) 

Such a choice was caused by the absence of analytical so-

lution for the function of indicated form. In performing cal-

culations, it was accepted that: 

- the number of grid steps on the correlation interval ( ) 

is  50p ; 

- the number of grid steps on the time interval between 

the measurements ( t ) is 

45,35,25,15,10,5,1 tm ; 

- the root-mean-square error of measurements ( R ) 

is   0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0. 

Table 1 and figure 1 below present the matrix  endtK y ,  

for one of initial data versions. 

 

Table 1. Correlation matrix  endtK y , , m=5,  0.1 

  
Forecast interval t  

0 0.2 0.4 0.6 0.8 1.0 

0 0.009 0.009 0.008 0.008 0.007 0.000 

0.1 0.009 0.138 0.130 0.122 0.115 0.100 

0.2 0.009 0.269 0.248 0.233 0.221 0.200 

0.3 0.008 0.256 0.367 0.344 0.326 0.300 

0.4 0.008 0.248 0.490 0.455 0.431 0.400 

0.5 0.008 0.241 0.470 0.566 0.537 0.500 

0.6 0.008 0.233 0.455 0.682 0.642 0.600 

0.7 0.007 0.227 0.443 0.659 0.747 0.700 

0.8 0.007 0.221 0.431 0.642 0.857 0.800 

0.9 0.006 0.214 0.419 0.624 0.829 0.900 

1.0 0.000 0.200 0.400 0.600 0.800 1.000 
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Figure 1. Correlation matrix  endtK y , , m=5,  0.1 

 

The highest accuracy is achieved at the last measure-

ment instant (the forecast time = 0). The values of matrix 

components monotonously grow with increasing forecast 

interval. When the forecast interval is equal to the correla-

tion interval  , the variance of errors is equal to 1, i.e. to 

the value of a priori correlation function  0, ttK y . Here the 

values of correlation moments  endtK y ,  и  endyK ,  co-

incide with the values of a priori correlation function (11). 

Table 2 presents the values of RMS errors as a function of 

forecast interval.  

 

Table 2. RMS of forecast errors  endttKy , , m=5,  0.1 

t  0 0.1 0.2 0.3 0.4 0.6 0.8 1.0 

RMS 0.097 0.38 0.52 0.62 0.70 0.83 0.92 1.00 

 

The RMS value for t=0 virtually coincides with the value 

 0.1. 

Table 3 gives the values of variances of estimates for the 

time instant of the last measurement (  endyK 0,0 ), i.e. the 

results of solution of the filtering problem. 

 
Table 3. Values of  endyK 0,0  for various m and   

m Values   

0 0.1 0.2 0.3 0.5 0.7 1.0 

1 0 0.0080 0.023 0.040 0.076 0.112 0.165 

5 0 0.0093 0.032 0.063 0.133 0.206 0.309 

15 0 0.0097 0.037 0.076 0.175 0.279 0.423 

25 0 0.0098 0.037 0.079 0.187 0.305 0.464 

35 0 0.0098 0.038 0.082 0.196 0.321 0.488 

45 0 0.0098 0.038 0.082 0.199 0.328 0.498 

The data of this table testify to a rather weak influence of 

the value of interval m between the measurements on the 

accuracy of measurements filtering results. 

Comment. The random process, considered in this exam-

ple, which has correlation function (11), possesses inter-

esting properties. Namely, this process can be construct-

ed in the following manner based on a sequence of inde-

pendent random numbers ,...1, jx j , distributed accord-

ing to the normal law )1,0(norm : 
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, (12) 

For the value of weighting coefficients jp =1 the ran-

dom process with the correlation function (11) takes 

place. Varying the values of weighting coefficients 

makes it possible to construct random processes with 

various correlation functions. Here the important ques-

tion arises, whether there exists the correlation func-

tion  0,tK y , in which the corresponding correlation co-

efficients are greater, than those in function (11). It is in-

tuitively clear that in this case the forecasting errors are 

lower, than those are presented above. To answer this 

question we consider the simplest case with 2 , 

  5.005.0,0 kK y  .  

This value in function (11) equals 0.5. Is it possible to 

increase it? The application of model (12) allows one to 

construct the equations for determining coefficients 1p  

and 2p .  We get: 

                       
.5.021

,1
2
2

2
1

kpp

pp




 

From these relations it follows that the condition   

  0212 5.0
2

2121
2
2

2
1   kpppppp     (13) 

should be satisfied. It is obvious that the random process 

with the value   5.05.0,0 5.00  kK y
 doesn't exist!!! 

Thus, one can draw the conclusion that in forecasting ran-

dom processes it is impossible to improve the forecasting 

accuracy as compared to the estimates presented in table 2.  

 

Example 2. F10.7 cm Solar Flux 
 

We will consider the application of the technique de-

scribed above for forecasting the intensity of radio emission 

of the Sun at the wavelength of 10.7 cm (index F10.7). Based 

on the data of site [10], figures 2 and 3 present the average 

daily values of index F10.7 over the time interval from May, 
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2002 to December, 2015 (for time periods with the height-

ened level of solar activity). The figures present also the 

averaged estimates (on the previous 81-day time interval). 

 

 
Figure 2. Data for time interval from June 2002 to May 2005 

 

 
Figure 3. Data for time interval from September 2011 to 

December 2015 
 

The changes in the index values are typical. They reflect 

the effect of well-known 28-day and 11-year cycles of solar 

activity. The plots clearly indicate also the irregular (ran-

dom) deviations, whose prediction is a problematic issue 

now. 

Below we use the assumption that deviations of current es-

timates of the index from the average values are random 

quantities. For each time instant, the normalized deviations 

were calculated 

          81817.10 FFtFty  .               (14)   

 Figures 4 and 5 present statistical distributions of esti-

mates (14). The constructed distributions are similar. In both 

cases, there exists some asymmetry. The amplitude of posi-

tive deviations exceeds the amplitude of negative deviations 

from the average one. This is associated, apparently, with 

the features of physical processes on the Sun. Nevertheless, 

the histograms not too highly differ from corresponding 

normal distributions. Therefore, the application of the con-

sidered technique of Gaussian random process forecasting is 

acceptable. 

 

 
Figure 4. Histogram for the time interval from June 2002 to 

May 2005 

 

 
Figure 5. Histogram for time interval from September 2011 to 

December 2015 
 

Figure six presents the autocorrelation function of random 

deviations (14) constructed according to the data of figures 2 

and 3.  

The form of the constructed autocorrelation function is 

expected. The manifestation of the well-known 28-day peri-

od of solar activity variations is clearly seen. The correlation 

sharply decreases from 1.0 to 0 in 9-10 days. The subsequent 

correlation maxima do not exceed the value of 0.4. One can 

also see essential decrease of correlation with time: it be-

comes less than 0.1 in 2 months. 
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Figure 6. Autocorrelation function of normalized deviations of 

index F10.7 from average values 

 

 
Figure 7. Correlation matrix  endtK y , , m=1,  0.1, 

« Time» = t  

 

Figure 7 presents the correlation matrix  endtK y , , calcu-

lated by formula (10) for the steady filtering mode with the 

values of parameters m=1,  0.1. This matrix differs from 

the similar matrix in figure 1 in the existence of a periodic 

component. This difference is a natural consequence of fea-

tures of the autocorrelation function presented in figure 6. 

When the forecast interval is equal to the correlation interval 

  ("Time" =1), the variance of errors is equal to 1, i.e. to 

the value of a priori correlation function  0, ttK y . Here the                                                                                                                                                                                                                                                                                                                                                                                 

values of correlation moments  endtK y ,  and  endyK ,  

coincide with the values of a priori correlation function pre-

sented in figure 6.  

Figure 8 presents the RMS of forecast errors. They were 

calculated based on the estimates of diagonal terms of ma-

trix  endtK y , . The data of axis x represent the forecast inter-

val in days. The maximum value of x (61) is equal to the 

correlation interval  . 

 

 
Figure 8. RMS of forecast errors  endttKy , , m=1,  0.1 

 

The data of this figure essentially differ from the similar 

data presented in table 2. On the time interval up to 10 days 

(10/61=0.16) the RMS errors rapidly increase up to the value 

of 0.9. For the forecast interval > 0, the RMS values exceed 

the corresponding data of table 2. This fact agrees with the 

above statement that in forecasting random processes it is 

impossible to improve the forecasting accuracy as compared 

to the estimates presented in table 2. The accounting for the 

periodic nature of a priori correlation function (1) in this 

example did not lead to increasing the accuracy. This ac-

counting was manifested only in a slow increase of RMS 

forecast errors from 0.9 to 1.0 for the forecast interval larger 

than 10 days. This result is explained by the fact that on the 

time interval larger than 10 days the correlation coefficients 

(figure 6) do not exceed the value of 0.4 and decrease down 

to zero.  

 
Table 4. RMS errors of forecasting the index F10.7 according to 

the data of figure 8 

F81 σ 
Forecast interval, days  

1 2 3 4 5 

126 0.18 6.7 9.5 12.2 14.5 16.4 

 

The data presented in figure 8 can easily be applied to es-

timate the RMS errors in forecasting the index F10.7. For this 

purpose, one should perform multiplication of three quanti-

ties: 1) the mean value of index (F81), 2) the RMS of rela-

tive deviations of current index values from the mean value 

(σ), 3) the RMS of normalized errors according to the data of 

figure 8. Table 4 gives the example of such a calculation.  
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It was mentioned above that the F10.7 estimates were down-

loaded from the site [10]. This site contains many other ma-

terials on the solar activity. In particular, the report [11] pre-

sents the detailed statistical data on the index forecasting 

errors over the time interval up to 5 days. Some of these 

materials (for the forecast interval up to 3 days) are given in 

figure 9. It is seen that the "RMS Error" estimates for 2013 

agree with the estimates of table 4.  

 

 
Figure 9. National Oceanic and Atmosphere Administration 

data on forecast errors 

 

Table 5 gives the more detailed data from the report [11] 

as well as the results of calculation of errors according to the 

data of figure 8 obtained with using the same estimates of 

parameters F81 and σ.  

 
Table 5. Comparison of RMS of errors of forecasting the F10.7 

index 

Source  F81 σ Forecast interval, days  

1 2 3 4 5 

NOAA data            122 0.167 5.4 8.6 11.2 13.7 15.6 

figure 8 122 0.167 5.9 8.6 10.9 13.0 14.8 

 

The table data demonstrate very good compliance of fore-

cast errors estimates obtained by various techniques. This 

testifies, apparently, to impossibility of increasing the accu-

racy of solar activity forecasting with the modern level of 

knowledge of its nature.  

 

Conclusion 
  

1. The technique of optimum forecasting the Gaussian 

random process, based on the measurements in a dis-

crete time, is substantiated. This technique differs 

from known approaches in the possibility of specify-

ing a priori autocorrelation function of the process in 

arbitrary form. The problem solution is reduced to 

successive application of two functional relations. 

2. The best forecasting accuracy is shown to be achieved 

for the process with a linear autocorrelation function. 

3. The application of the developed technique for fore-

casting the Sun radio emission index F10.7 in the peri-

ods of high solar activity level is considered. The 

comparison of obtained results with the corresponding 

NOAA data demonstrated very good compliance of 

forecast errors estimates. This testifies, apparently, to 

impossibility of further increasing the accuracy of so-

lar activity forecasting with the modern level of 

knowledge of its nature.  
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